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Abstract. When a 2–4 mm diameter bubble rising with constant velocity hits a thin wire, bubble shape
oscillations can be induced. As a consequence also the bubble rise velocity strongly oscillates. With the
help of a force balance we show that these velocity oscillations are an added-mass effect.

PACS. 47.55.Dz Drops and bubbles – 47.20.Dr Surface-tension-driven instability

1 Introduction

What is the impact of a bubble’s shape oscillation on its
rise velocity? Recent experiments by Wu and Gharib [1]
with rising bubbles in still water suggest that an oscillat-
ing bubble can be nearly twice as fast as an non-oscillating
bubble of the same volume. Bubbles with equivalent di-
ameters (i.e., the diameter of a spherical bubble of the
same volume) ranging from de = 1−2 mm were analyzed.
Whether the bubble was in the shape oscillating mode or
in the non-oscillating mode depended on the way how it
was generated: The non-oscillating, slow bubble was gen-
erated using a large capillary dcapillary ∼ de and its veloc-
ity was comparable to the rise velocity of a solid sphere
of the same volume [2]. The shape oscillating, fast bub-
ble (with the same volume) was generated using a narrow
capillary dcapillary � de and its mean velocity was only
slightly slower than that predicted for a clean bubble with
slip boundary conditions [2]. Wu and Gharib [1] conclude
that there are two different “modes” for rising bubbles.
Depending on the way of bubble generation, they end up
either in the fast or in the slow mode.

The Wu and Gharib results [1] are very surprising
and had not been found in previous experiments. e.g.
Duineveld [3,4], Maxworthy et al. [5], and de Vries [6] all
find fast non-oscillating bubbles, close to the theoretical
velocities predicted for slip boundary conditions. These
researchers also all stress the important role of the surfac-
tants on the bubble’s rise velocity which slow them down.
The reason for this is that the boundary conditions on the
bubbles are (partly) modified to no-slip boundary condi-
tions. However, in these analyses the impact of the bubble
shape oscillations on the rise velocity has not been studied.
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The only study known to us which is studying the in-
terplay between bubble shape oscillations and the bub-
ble velocity is the study by Lunde and Perkins [7]. These
authors analyzed rising bubbles with an equivalent diam-
eter de = 2.4 − 5.0 mm in tap water, corresponding to
Weber numbers between We = 3.6−4.3. Undamped bub-
ble shape and velocity oscillations were observed, start-
ing immediately after bubble detachment from the noz-
zle. From the oscillating bubble shape the time dependent
added-mass force on the bubble was extracted. The corre-
sponding bubble acceleration was in reasonable agreement
with what was found through a data analysis of the bub-
ble’s path. Drag and buoyancy were not considered in that
analysis.

The analyses of references [1,7] are in contrast to
the recent results by Ellingsen and Risso [8], also ob-
tained for tap water: Though their de = 2.5 mm bub-
ble was produced with a narrow capillary (inner diameter
0.33 mm � de), these authors did not observe bubble
shape oscillations, but an instability of the bubble’s path
[6,9,10]. The absolute value of the velocity was constant,
but the direction was oscillating. These oscillations were
connected to the observed zigzagging or spiraling of the
bubbles [6,10,11].

To clarify how bubble shape oscillations affect the rise
velocity, it is desirable to study the very same bubble
in the same water (guaranteeing the same amount and
kind of surfactants), once without and once with shape
oscillations. This can be achieved by letting a rising non-
oscillating bubble hit a wire and induce shape oscillations
this way. The results on such experiments are reported in
this paper.

These type of experiments also offer the opportunity
to study the hydrodynamic forces on a bubble, in particu-
lar the added-mass force and the drag force. These forces



504 The European Physical Journal B

are crucial to control bubbles in flow situations. Though
considerable progress had been achieved [12,13,11,14],
these forces are still not fully understood. In particular, lit-
tle is known on how bubble shape oscillations affect them.
We will construct a simple force balance model to theo-
retically account for our findings.

We mention that the starting point of our studies had
been hot-film anemometry in turbulent bubbly flow [15].
In order to better understand the interaction between the
hot-film anemometer probe and a passing bubble, we em-
ployed high speed cinematography correlating the image
sequences with the probe signal. The results from that
study will be reported elsewhere [16].

The outline of the present paper is as follows: In Sec-
tion 2 the experiment and its results are described. In
Section 3 the approximate force balance model for the ris-
ing shape-oscillating bubble is derived, whose results for
the oscillating bubble velocity are compared with direct
measurements in Section 4. The paper ends with a sum-
mary and an estimate about what will happen for smaller
bubbles (Sect. 5).

2 Experiments

The experiments were performed in ultra-clean (purified)
water comparable to the water used by Duineveld [3]. The
bubbles were released from a capillary with inner diame-
ter of 1.0 mm. The bubble volume was controlled through
the gas flow rate. The typical equivalent diameter was
de = 2.0 − 4.0 mm. We used a stereoscopic setup and a
high-speed camera (2000 fps) to measure the shape and
the velocity of the bubble before, during, and after the
bubble hits a hot-film anemometer. From each frame of
the sequence of stereo image pairs the bubble’s centroid
and contour were obtained. From the contour line sev-
eral shape descriptors as well as the eccentricity and the
major and minor axes were measured. The accuracy of
the measurement of the position of the bubble is typi-
cally ±200 µm. The three dimensional trajectory of the
rising bubble was obtained by tracking the bubbles with
a Kalman filter [17,18]. Thus, an estimate of the position
and velocity of the bubble was obtained.

For a bubble with de = 2.4 mm the rise velocity v
relative to the liquid was 0.33 ms−1, corresponding to a
Weber number of We = ρlv

2deσ
−1
l = 3.6. Here, ρl and σl

denote the density and the surface tension of the liquid,
respectively. Note that the rise velocities of a de = 2.4 mm
bubble reported by Clift et al. [2], Maxworthy et al. [5],
and Ellingsen and Risso [8] are slightly lower, namely
0.28 ms−1 and 0.31 ms−1, respectively. This presumably is
due to a slight contamination of their water, as extensively
discussed by e.g. Duineveld [3,4].

The interaction of the bubbles with the probe (cylin-
drical and 74 µm in diameter) can induce bubble shape
oscillations, which cause also an oscillation of the rise ve-
locity. Figure 1 shows images recorded with the high-speed
camera after the interaction with the hot-film probe. The
velocity of the bubble before, during and after the inter-
action is given in Figure 2. Figure 3 presents the three

6 mm

t = 9 ms

t = 4 ms

t = 0 ms

Fig. 1. Selected frames of a sequence of the high-speed images.
In the left frame the bubble and the hot-film probe are shown.
In the right frame the same bubble and probe are shown, but
from a direction turned by 90o. The view in the right frame is
corresponding to the view from the right side in the left frame.
The equivalent bubble diameter is de = 2.4 mm. The given
times correspond to the marked times of Figure 2. The bubble
detaches from the probe at t = 0 s.

axes a, b, and c (defined in Fig. 4) of the bubble also
before, during and after the interaction. The oscillations
of the axes have the same period as the oscillation of the
velocity. From Figures 2 and 3 it is clear that the bub-
ble’s shape and velocity do not oscillate before the interac-
tion. The oscillations are induced by the interaction with
the probe. During the inelastic collision the bubble loses
momentum thus reducing its mean rise velocity. As the
bubble departs from the wire, the mean velocity increases
again towards its asymptotic limit. In contrast to the find-
ings of reference [1], no increase of the mean velocity of
the now oscillating bubble is observed.

Let us now account for the frequency of the observed
bubble shape oscillations. For the de = 2.4 mm bubble
shown in Figures 1–3, the period of the shape and the
velocity oscillations is 9 ± 1 ms. In Table 1 the values for
bubbles with various diameters are given. How do these
measured frequencies agree with the expected value for
bubble shape oscillations? This theoretical frequency is
given by [19]

ω2
n =

βnσl

ρl(1
2de)3

, (1)
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Fig. 2. The measured velocity vz of a rising bubble. The regions I, II, and III denote the bubble’s approach, collision, and
departure, respectively. The bubble departs from the probe with collision induced velocity oscillations. The circles correspond
to the frames depicted in Figure 1.
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Fig. 3. The experimental determined axes a and b (solid and dashed) and c (dotted) of a rising bubble. For t < −10 ms the
bubble axes are constant within experimental errors. At t = −7.5 ms the interaction between the bubble and the hot-film probe
starts. At t = 0 s the bubble detaches from the hot-film probe and its axes oscillate. The arrows are drawn at the times t = 0 ms,
4 ms, and 9 ms shown in Figure 1.

with βn = (n−1)(n+1)(n+2). From looking at the image
frames we find n = 2. For the de = 2.4 mm bubble of
Figures 1–3 the theoretical period T = 2π/ω = 1/f is T =
8.8 ms, in very good agreement with the measured value of
9± 1 ms (from Figs. 2, 3). In Table 1 a comparison of the
theoretical and experimental periods of various oscillating
bubbles are given. It shows good agreement within the
accuracy of the measurement, which is given as ∆Texp ≈
1 − 2 ms in the last column of the table.

3 Force balance

Now we describe the equation of motion for the bubble
using a force balance model. We consider the rise of the
bubbles in quiescent uncontaminated water, i.e. there is
no shear stress between bubble and liquid. The sum of the
forces acting on the bubble results in a change of momen-
tum of the bubble,∑

F = Fb + Fd + Fa =
d
dt

(mv) ≈ 0 (2)
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Table 1. A comparison between the theoretical and the ex-
perimental values of the period T of shape oscillations of var-
ious oscillating bubbles with different de. The theoretical val-
ues refer to the n = 2 mode which is the one observed in
the experiments. Also given are the bubble rise velocities be-
fore the impact on the wire and the corresponding Weber
numbers We = ρlv

2deσ
−1
l .

de v We Ttheory Texp ± ∆Texp

[mm] [m s−1] [ms] [ms]

2.2 0.30 2.7 7.7 9 ± 1

2.4 0.33 3.6 8.8 9 ± 1

2.6 0.30 3.2 9.6 10 ± 1

2.8 0.31 3.7 11.1 14 ± 2

3.2 0.28 3.4 13.6 14 ± 2

where m = ρgVb is the mass of the gas bubble with den-
sity ρg and volume Vb, and v its the velocity relative to the
fluid. The mass of the bubble can be neglected, as ρl � ρg

for the liquid density. The forces acting on the bubble are
the buoyancy force Fb, the drag force Fd, and the added-
mass force Fa, which is an inertia effect originating from
the necessity for the rising bubble to push the water away.
We assume that there is no history force. Moreover, there
is no lift force as the water is at rest. An extensive discus-
sion of all forces can be found in reference [20].

The buoyancy force is

Fb = ρlVbg, (3)

where g = (0, 0, g) is the gravitational acceleration.
The drag force is

Fd = −1
2
CdρlπR2

s|v|v, (4)

where πR2
s is the area of the bubble projected onto a plane

perpendicular to the direction of motion. The drag coef-
ficient Cd depends both on the Reynolds number and the
shape of the bubble. We assume that the shape of the
bubble can be approximated by an oblate axisymmetri-
cal ellipsoid. If we denote the principal axes of the el-
lipsoid with a, b, and c, this assumption corresponds to
a = b ≥ c (see Fig. 4). Furthermore, we assume that the
bubble moves along its axis of symmetry, i.e. its minor
axis. Then the drag coefficient Cd is given by [21]

Cd =
48
Re

G(ε)
(

1 +
H(ε)√

Re

)
, (5)

where the eccentricity is defined by ε = a/c = b/c ≥ 1.
The Reynolds number is defined as Re = 2Rs|v|ν−1

l
with νl denoting the liquid viscosity. The shape depen-
dence of the drag coefficient Cd is captured by the func-
tions G(ε) and H(ε). For the bubbles analyzed in this pa-
per the Reynolds number is 800 and above. Therefore, and
as |H(ε)| is order of 1, the second term on the right-hand
side in equation (5) can be neglected. Thus, we restrict

z

a

c

v

x
y

b

Fig. 4. Definition of the axes a, b, and c for an ellipsoidal
bubble moving with the velocity v relative to the liquid. The
bubble is called oblate (prolate), if a, b > c (a, b < c).

our description to first order corrections. The shape fac-
tor G(ε) can be expressed through [21]

G(ε) =
1
3
ε4/3(ε2 − 1)3/2 [(ε2 − 1)1/2 − (2 − ε2) sec−1 ε]

[ε2 sec−1 ε − (ε2 − 1)1/2]2
·

(6)

For a spherical bubble ε = 1 and G = 1. With increas-
ing ε also G increases rapidly. Therefore, a bubble of given
volume will experience an increased drag if its surface is
distorted.

The most relevant force in our context here will turn
out to be the added-mass force. It is given by

Fa = − d
dt

(Mv), (7)

where M denotes the added-mass tensor, which is derived
in articles 114, 115, and 121 of Lamb [19]. Note that in
general the velocity change and the added mass force need
not be parallel. Here, however, for simplicity we make two
approximations: (i) Again, we assume that the bubble is
an oblate axisymmetric ellipsoid. (ii) We assume that its
symmetry axis is the z-axis in the laboratory frame. From
Figures 1 and 3 (and from unshown material) we see that
these approximations are delicate directly after the bub-
ble’s detachment from the wire. However, the point we
want to make turns out to be robust, and therefore we
feel free to use the approximation. Employing (i) and (ii)
and restricting ourselves to the z-component of the veloc-
ity leaves us with

Mzz = ρlVb
γ0

2 − γ0
(8)

as only relevant part of the added mass tensor, with

γ0 =
2
e2

(
1 −

√
1 − e2

e
arcsin(e)

)
, (9)

e =
√

1 − (c/a)2 =
√

1 − (c/b)2 =
√

1 − ε−2. For a spher-
ical bubble e = 0, γ0 = 2/3, and we recover the well known
result that the added mass is ρlVb/2.

Inserting equations (3–8) in equation (2) yields the
force balance

0 = ρlVbg − 1
2
CdρlπR2

s|vz|vz − d
dt

(Mzzvz). (10)
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Fig. 5. The experimental (solid) and numerically calculated (dashed) acceleration dvz/dt of the bubble.
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Fig. 6. The experimental (solid) and numerically calculated (dashed) velocity vz of the bubble.

Note that both the drag coefficient and the added-mass
are time dependent, i.e. Cd = Cd(t) and Mzz = Mzz(t),
respectively. Considering this, equation (10) can be rewrit-
ten as

Mzz(t)
d
dt

vz(t) = ρlVbg − 1
2
Cd(t)ρlπRs(t)2|vz(t)|vz(t)

− vz(t)
d
dt

Mzz(t). (11)

We solve this ODE with a fourth-order Runge-Kutta
scheme. From the experimental data we obtain the prin-
cipal axes of the bubble a = a(t), b = b(t), and c = c(t)
as described in Section 2 (see Fig. 3). The drag coefficient
Cd(t) and the added-mass coefficient Mzz(t) are then com-
puted with equations (5, 6) and equations (8, 9), respec-
tively. The experimental data is available at discrete time
steps only. Therefore interpolation with cubic splines pro-

vides intermediate values required for the numerical cal-
culation. The initial conditions and the parameters val-
ues for the numerical simulation of equation (11) are as
follows. The initial velocity of the bubble at t = 0 ms,
i.e. at the detachment of the bubble from the probe,
is v(0) = 0.28 m s−1. The bubble’s volume is assumed
to be constant with Vb = 6.3 mm3. The gravitational
acceleration, the density, and viscosity of the liquid are
g = 9.81 m s−2, ρl = 998 kg m−3, and νl = 10−6 m2 s−1,
respectively.

4 Comparison between the model
and experimental data

In Figures 5 and 6 the experimental and numerical accel-
erations and velocities are shown. From Figures 5 and 6
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Fig. 7. The numerically calculated velocities vz of the bubble. The solid line corresponds to the full numerical model, i.e.,
Fb, Fd and Fa of equation (2). For the dashed line only Fb and Fd have been employed; that curve shows only very small
oscillations. For the dashed-dotted curve only Fb and Fa have been employed; that curve shows strong velocity oscillations.

it is clear that the frequencies of the shape oscillations
of the experimental and numerical data agree very well.
Also the amplitude for the acceleration agrees reasonably,
at least during the first and third period. During the sec-
ond period (10–23 ms) the agreement in the acceleration
is only qualitative. Our interpretation of this quantitative
disagreement is as follows: From Figure 3 it can be seen
that in that time interval the amplitude of the minor axis c
is a bit suppressed. Probably this is an artifact due to the
assumptions that are made in analyzing the images. Be-
cause of the smaller amplitude of the oscillations of the
minor axis, also the amplitude of the calculated velocity
oscillations will be smaller. Another difference is that the
mean value of the velocity is about 20% larger in the nu-
merical data than in the experimental data. Ellingsen and
Risso [8] predict an increase of the drag by the instability
of the wake behind the bubble in a non-rectilinear path.
As this instability is not reflected in the model, it can be
a further origin of the smaller mean velocity in the exper-
imental case. Further reasons for the quantitative discrep-
ancy can be the employed approximations for the added
mass tensor M, the (neglected) added-mass force needed
for the rotation of the ellipsoidal bubble, or the back re-
action on the bubble of the flow induced by the shape
oscillations.

We now want to study whether it is the shape oscilla-
tion induced oscillation in the drag or in the added-mass
force in equation (10) which is responsible for the veloc-
ity fluctuations. Therefore we turn off various forces in
equation (10) and repeat the numerical integration. The
result is shown in Figure 7. Including only buoyancy and
the drag force results in an increase of the velocity, and in
very small oscillations. In fact that the velocity increases
shows that we underestimate the drag, as compared to ex-
periment. The calculations are done with the no-slip drag
coefficient, whereas tiny contaminations of the water will

lead to a larger drag coefficient and correspondingly to less
acceleration and a smaller equilibrium rise velocity. When
the added-mass force is included in the force balance (so
all forces are included now), the velocity is further de-
creased and it starts to oscillate with an amplitude that is
much larger than the oscillations caused by the drag force.
So we have demonstrated that the oscillations in the ve-
locity are due to the oscillating added-mass force, and not
to the oscillating drag force.

This also reflects in the relative phases of the maxima
and minima of the bubble axes and the velocities. When
the vertical bubble extension c is minimal (roughly at t =
4 ms, 12 ms, and 22 ms in Fig. 3), the horizontal extension√

ab gets maximal and therefore also the amount of water
the bubble has to push. Correspondingly, at those times
the bubble’s acceleration (Fig. 5) gets minimal and slightly
later therefore the bubble’s velocity (Fig. 6).

The most relevant difference between our results and
those from Lunde and Perkins [7] is the way how the
oscillations arise. Whereas Lunde and Perkins observe
spontaneous bubble oscillations because they use narrow
capillaries, we induce oscillations through the interaction
between the bubble and the probe and are thus able to
observe the very same bubble either oscillating or not.
A quantitative comparison also shows that in our case
the amplitude of the oscillation of the major and mi-
nor axes is about three times larger. Also the accelera-
tion of the bubbles (Fig. 5) is larger in our experiments,
about seven times. Another difference is the damping of
the oscillations. Whereas the oscillations in our experi-
ments are damped, those in the experiments by Lunde
and Perkins are not. As the bubbles are in the very same
size regime, we do not understand the origin for this dif-
ference; possibly it is due to the higher degree of contami-
nation in their (tap)-water as compared to the ultra-clean
water in our case. It is hard to estimate the experimental
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damping coefficient γexp of the shape oscillations from the
axes dynamics such as in Figure 3. Comparing the first
two peaks one gets γexp ≈ 30 s−1. The corresponding the-
oretical value [19,22] is γtheory = 56 ν2/(3R) ≈ 13 s−1.

5 Discussion and conclusions

In conclusion, we have performed experiments with
2–4 mm diameter bubbles interacting with a hot-film
anemometer probe in ultra-clean water. The interaction
can induce bubble shape oscillations. The main findings
are:

• The experiments clearly show that the shape-
oscillating bubbles after the interaction do not have
higher mean velocities than the non-oscillating bub-
bles before the interaction, in contrast to Wu and
Gharib [1], who measure much larger velocities for a
shape oscillating bubble.

• The shape-oscillations result in an oscillating bubble
rise velocity. It is shown through a simple force balance
model that the (oscillating) added-mass force causes
the oscillations in the velocity.

This second finding of course depends on the bubble di-
ameter. If we compare estimates of the various forces in
equation (10), we obtain

Fa

Fd
≈ f 1

2ρl
4
3πR3v

1
2CdρlπR2v2

=
√

6
36π

√
dσ

ρlν2
=

√
6

36π

Re√
We

, (12)

where f = ω2/2π is the shape oscillation frequency fol-
lowing from equation (1), and

Fa

Fb
=

1
2ρlVbv

ρlVbg
=

√
6

π

√
σ

ρld3

v

g
=

√
6

π

Fr2

√
We

, (13)

where we have introduced the Froude number Fr =
v/

√
gd. Indeed, for the 2.5 mm diameter bubble here we

have Fa/Fd ≈ 9, confirming the claim that the added
mass force is dominant. However, for smaller bubbles the
drag force will of course get more and more important.
E.g. equal importance of drag and added mass occurs at
Fa/Fd = 1, corresponding to a bubble with a diameter of
d ≈ 216π2ρlν

2/σ ≈ 30 µm.
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